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Abstract

A generalised framework has recently been proposed for derivation of kinematically admissible velocity fields in 3-

dimensional upper bound limit analysis in Tresca�s material using coordinate transformations. In many cases the ap-

proach allows the local dissipation of plastic work to be derived in closed form. The original framework was restricted

to orthogonal coordinate systems. However, the present paper extends the approach to allow for variations in plane or

radial velocity fields in a direction normal to the field. This important extension allows applications to horizontal

loading of circular foundations, or vertical loading of non-circular (e.g. square) foundations.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Upper bound limit analysis has proved a powerful tool in the solution of bearing capacity problems.

Historically, most solutions were restricted to 2-dimensional problems, either in plane strain or axial

symmetry, although 3-dimensional solutions have also been developed (e.g. Shield and Drucker, 1953;

Murff and Hamilton, 1993). In spite of the power of modern finite element software, upper bound solutions

still have a role to play, offering a number of advantages in terms of clear physical meaning, simplicity of

mathematical calculations, and extension to heterogeneous materials (of particular relevance to geotech-

nical engineering problems).

Recently, Puzrin and Randolph (2003) have proposed a generalised framework for developing 3-
dimensional upper bound solutions for materials satisfying Tresca�s failure criterion, ensuring admissibility

in respect of zero volumetric strains and adopting local coordinate systems that simplify computation of the

maximum principal strain rate. The framework uses orthogonal curvilinear coordinates and allows for

derivation of kinematically admissible velocity fields (KAVFs) with new streamline shapes, including

derivation of new plane but non-plane-strain fields and new radial but non-axisymmetric fields. However,

because of the restriction to orthogonal coordinate systems, derivation of arbitrary 3-dimensional velocity
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fields was not possible. For example, plane fields cannot be derived for footing shapes other than an infinite

strip, while radial fields cannot be derived for footing shapes other than circular.

The motivation of this paper is to develop an approach for construction of easily calculable 3-dimen-

sional KAVFs, which would allow greater flexibility in the generation of new upper bound solutions in-
volving, for example, plane velocity fields for a circular footing under horizontal or moment loading, or

radial fields for arbitrarily shaped footings. At this stage the analysis will be restricted to the fields with

straight or circular streamlines. In spite of this limitation, it is believed that the proposed approach will

allow for more accurate approximation of the velocity fields obtained from FE analysis, and hence the

development of improved upper bound solutions.

2. General framework for orthogonal fields

The key elements in the framework proposed by Puzrin and Randolph (2003) are summarized briefly

below, before extending their work to non-orthogonal systems. The general method for determining an

upper bound solution for assemblages of rigid and elastic–perfectly plastic bodies has been presented by

Drucker et al. (1951) and Shield and Drucker (1953). For Tresca�s yield criterion of constant maximum

shearing stress, cu, the upper bound solution for the surface traction T ¼ fTx; Ty ; TzgT is calculated from the

following equation:Z
S
TTvdS ¼ W ðT; vÞ ¼ DðvÞ ¼

Z
V
2cuj_eejmax dV þ

Z
SD

cujDvjdS ð1Þ

where v ¼ fvx; vy ; vzgT––the KAVF; W ðT; vÞ, the rate of work done by the surface tractions; DðvÞ, the rate of
dissipation of work; j_eejmax, the absolutely largest principal component of the plastic strain rate; Dv, velocity
jump across any discontinuity; S, the surface that bounds the body or the assemblage of the bodies; V , the
volume of the assemblage of the bodies; SD, the surface(s) of all discontinuities.

Any variation in the maximum shearing stress, cu, between the bodies in the assemblage, within the

volume of the bodies and along discontinuities must be taken into account in the evaluation of dissipation

in Eq. (1). Rigid bodies in the assemblage contribute nothing to the volume integration since the strain rate

is zero for a rigid body.

2.1. Orthogonal curvilinear coordinates

Consider Cartesian coordinates (X ; Y ; Z) and an alternative curvilinear orthogonal coordinate system

x ¼ xðX ; Y ; ZÞ
y ¼ yðX ; Y ; ZÞ
z ¼ zðX ; Y ; ZÞ

8<
: ð2Þ

defined in such a way that the x-axis (given by intersection between coordinate surfaces y and z) is directed
down the streamline of the velocity field. Thus, let the velocity field in coordinate directions x, y and z be
defined as v ¼ fu; v;wgT, with:

u ¼ uðx; y; zÞ v ¼ 0 w ¼ 0 ð3Þ

For these conditions, the small strain rate tensor in general orthogonal curvilinear coordinates is given by

(Boresi and Chong, 2000):
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ð4Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX;xÞ2 þ ðY;xÞ2 þ ðZ;xÞ2

q
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX;yÞ2 þ ðY;yÞ2 þ ðZ;yÞ2

q
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX;zÞ2 þ ðY;zÞ2 þ ðZ;zÞ2

q ð5Þ

and the notation a;b ¼ oa=ob is adopted.

The incompressibility condition is equivalent to the following differential equation:

u;x
a
þ

b;x

b
u
a
þ

c;x
c

u
a
¼ 0 ð6Þ

which, upon integration, yields the following functional form for the velocity component u:

uðx; y; zÞ ¼ f ðy; zÞ
bc

ð7Þ

where f ðy; zÞ is an arbitrary function of y and z. Thus the incompressibility condition does not place any

restrictions on variation of the velocity with the y and z coordinates, but its variation with the x-coordinate
depends on the functional form of b and c.

Application of the above method to a chosen KAVF requires obtaining a closed form solution for the

system of equations (2):

X ¼ X ðx; y; zÞ
Y ¼ Y ðx; y; zÞ
Z ¼ Zðx; y; zÞ

8<
: ð8Þ

satisfying uniqueness and orthogonality conditions:

J ¼
X;x Y;x Z;x

X;y Y;y Z;y

X;z Y;z Z;z

������
������ 6¼ 0 ð9Þ

X;xX;y þ Y;xY;y þ Z;xZ;y ¼ 0

X;zX;y þ Y;zY;y þ Z;zZ;y ¼ 0

X;xX;z þ Y;xY;z þ Z;xZ;z ¼ 0

8<
: ð10Þ

Then, a family of non-intersecting streamlines can be associated with the x-coordinate lines. We shall first

consider a class of velocity fields such that each streamline in the field lies entirely within some plane,

referring to these fields as planar velocity fields. In planar velocity fields the condition that streamlines

should never intersect can be most easily satisfied in the following two cases:

Case I: Plane velocity fields––where all the planes are parallel to each other;
Case II: Radial velocity fields––where all the planes intersect along the same straight line.

These cases are considered separately below.
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2.2. Plane velocity fields

Let us choose the Z-axis of the Cartesian coordinate system in such a way that all the planes containing

streamlines are orthogonal to it. In this case the coordinate surface z is a plane given by z ¼ Z 	 Z0, so that
Z;x ¼ Z;y ¼ 0 and Z;z ¼ 1. The uniqueness condition (9) becomes

X;xY;y 	 Y;xX;y 6¼ 0 ð11Þ

and it follows that, in order to have a non-trivial solution, orthogonality conditions (10) must be reduced

to:

X;xX;y þ Y;xY;y ¼ 0
X;z ¼ Y;z ¼ 0

�
ð12Þ

Let us consider some simple coordinate transformations satisfying both uniqueness (11) and orthogonality
conditions (12).

Example 2.2.1 (Straight streamlines). Consider coordinate surfaces x, y and z given by expressions

x ¼ ðX 	 X0Þ cosw þ ðY 	 Y0Þ sinw
y ¼ ðY 	 Y0Þ cosw 	 ðX 	 X0Þ sinw
z ¼ Z 	 Z0

8<
: ð13Þ

Intersection of a family of coordinate surfaces y with a plane z produces a family of straight parallel

streamlines, inclined to any Y ¼ const: plane by angle w. When Eqs. (13) are resolved, they produce:

X ¼ X0 þ x cosw 	 y sinw
Y ¼ Y0 þ x sinw þ y cosw
Z ¼ Z0 þ z

8<
: ð14Þ

From Eqs. (5) it follows that a ¼ b ¼ c ¼ 1 and from Eq. (7): u ¼ f ðy; zÞ is some function of coordinates

y and z describing a particular velocity field, satisfying the incompressibility condition for any smooth f .

Example 2.2.2 (Circular streamlines). Consider coordinate surfaces x, y and z given by expressions

x ¼ arctan
Y 	 Y0
X 	 X0

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY 	 Y0Þ2 þ ðX 	 X0Þ2

q
z ¼ Z 	 Z0

8>>>><
>>>>:

ð15Þ

Intersection of a family of coordinate surfaces y with the plane z produces a family of circular concentric

streamlines, which are centered at the point fX0; Y0g. When Eqs. (15) are resolved, they produce:

X ¼ X0 þ y cos x
Y ¼ Y0 þ y sin x
Z ¼ Z0 þ z

8<
: ð16Þ

From Eqs. (5) it follows that a ¼ y and b ¼ c ¼ 1 and from Eq. (7) u ¼ f ðy; zÞ satisfies the incompressibility

condition for any smooth f .
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2.3. Radial velocity fields

Let us choose the Y -axis of the Cartesian coordinate system in such a way that it belongs to all the planes

containing streamlines. In this case the coordinate surface z is a plane given by Z ¼ X tan z, so that

Z;x ¼ X;x tan z
Z;y ¼ X;y tan z
Z;z ¼ X;z tan zþ X ð1þ tan2 zÞ

8<
: ð17Þ

The uniqueness condition (9) becomes

X;xY;y 	 Y;xX;y 6¼ 0

X 6¼ 0

�
ð18Þ

and it follows, that in order to have a non-trivial solution, orthogonality conditions (10) must be reduced
to:

X;xX;yð1þ tan2 zÞ þ Y;xY;y ¼ 0

X;z ¼ 	X tan z
Y;z ¼ 0

8<
: ð19Þ

Two simple examples satisfying these conditions are considered below.

Example 2.3.1 (Straight streamlines). Consider coordinate surfaces x, y and z given by expressions

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Z2

p
	 R0

� �
cosw þ ðY 	 Y0Þ sinw

y ¼ ðY 	 Y0Þ cosw 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Z2

p
	 R0

� �
sinw

z ¼ arctanðZ=X Þ

8<
: ð20Þ

Intersection of a family of coordinate surfaces y with a plane Z ¼ X tan z produces a family of straight

parallel streamlines, inclined to any Y ¼ const: plane by angle w. When Eqs. (20) are resolved, they pro-

duce:

X ¼ ðx cosw 	 y sinw þ R0Þ cos z
Y ¼ Y0 þ x sinw þ y cosw
Z ¼ ðx cosw 	 y sinw þ R0Þ sin z

8<
: ð21Þ

From Eqs. (5) it follows that a ¼ b ¼ 1 and c ¼ x cosw 	 y sinw þ R0 and from Eq. (7) u ¼ f ðy; zÞ=
ðx cosw 	 y sinw þ R0Þ satisfies the incompressibility condition for any smooth f .

Example 2.3.2 (Circular streamlines). Consider coordinate surfaces x, y and z given by expressions

x ¼ arctan
Y 	 Y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2 þ Z2
p

	 R0

y ¼ ðY 	 Y0Þ cosw 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Z2

p
	 R0

� �
sinw

z ¼ arctan
Z
X

8>>>><
>>>>:

ð22Þ

Intersection of a family of coordinate surfaces y with a plane Z ¼ X tan z produces a family of circular

concentric streamlines, which are centered at the points fR0 cos z; Y0;R0 sin zg. When Eqs. (22) are resolved,
they produce:
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X ¼ ðy cos xþ R0Þ cos z
Y ¼ Y0 þ y sin x
Z ¼ ðy cos xþ R0Þ sin z

8<
: ð23Þ

From Eqs. (5) it follows that a ¼ y, b ¼ 1 and c ¼ y cos xþ R0, so that from Eq. (7) u ¼ f ðy; zÞ=
ðy cos xþ R0Þ satisfies the incompressibility condition for any smooth f .

2.4. Discussion

The general framework presented above allows for derivation of the 3-dimensional KAVFs from any

unique orthogonal transformation of Cartesian coordinates fX ; Y ; Zg. Straight and circular streamline

shapes have been considered, but other shapes are possible, for example involute, hyperbolic, etc. (Puzrin

and Randolph, 2003). It is also possible to derive new plane but non-plane-strain KAVFs and radial but

non-axisymmetric KAVFs. However, because the curvilinear coordinates used in this method are or-

thogonal, derivation of arbitrary planar 3-dimensional KAVFs is not possible. For example, plane fields

cannot be derived for footing shapes other than a strip, while radial fields cannot be derived for foot-
ing shapes other than circular, because for a planar field this would violate orthogonality between the z-
coordinate axis and xoy plane.

The purpose of this paper is to extend the above approach to allow for a greater flexibility in generation

of the new planar KAVFs, in particular plane fields for a circular footing or radial fields for arbitrarily

shaped footings. This extension can be easily accommodated by allowing for parameters X0; Y0; Z0;R0 and w
in coordinate transformations (14), (16), (21) and (23) to be some functions of z. Unfortunately, such

modifications result in these transformations becoming non-orthogonal, and the strain-rate tensor cannot

be expressed in the simple form (4) any more. Of course, there is a formal way to treat non-orthogonal
curvilinear transformations of coordinates and to derive corresponding components of the strain-rate

tensor (Sedov, 1973). Unfortunately, this general approach results in rather monstrous relationships for

strain-rate tensor components, which are unlikely to result in closed form expressions for the local dissi-

pation of plastic work. Bearing in mind that the objective of this study is to introduce more realistic shapes

of KAVFs, while maintaining simplicity and clear engineering meaning of the upper bound solutions, it is

essential to minimise complexity.

3. Simplified technique for non-orthogonal planar fields

This section offers a simplified technique for derivation of the plastic strain-rate tensor and of the local

dissipation of plastic work for some types of planar velocity fields, which cannot be obtained using or-

thogonal curvilinear coordinates. The technique will be applied to fields with straight and circular

streamlines, although it is developed in a general form to include other shapes as well.

3.1. Non-orthogonal curvilinear coordinates

Consider a curvilinear orthogonal coordinate system (2) with a functional dependence on parameter t:

x ¼ xðX ; Y ; Z; tÞ
y ¼ yðX ; Y ; Z; tÞ
z ¼ zðX ; Y ; Z; tÞ

8><
>: ð24Þ
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where X , Y and Z are Cartesian coordinates:

X ¼ X ðx; y; z; tÞ
Y ¼ Y ðx; y; z; tÞ
Z ¼ Zðx; y; z; tÞ

8<
: ð25Þ

When parameter t is independent of coordinates, the coordinate system (24) is orthogonal and the approach

described in the previous section applies. Modification of this approach will be achieved by identifying

parameter t with curvilinear coordinate z, resulting in the coordinate system (24) becoming non-orthogonal.

However, for sake of formality, it is useful to keep them as two separate variables till later stages. The

original velocity field, when presented in curvilinear coordinates ðx; y; zÞ, is given by the vector:

v ¼ uex þ vey þ wez ð26Þ

where u ¼ uðx; y; z; tÞ, v ¼ vðx; y; z; tÞ, w ¼ wðx; y; z; tÞ are the corresponding components of the velocity

field; exðx; y; z; tÞ, eyðx; y; z; tÞ and ezðx; y; z; tÞ are unit coordinate vectors in coordinate directions x, y and z,
respectively (Boresi and Chong, 2000):

ex ¼
rx
a

ey ¼
ry
b

ez ¼
rz
c

ð27Þ

where rðx; y; z; tÞ ¼ fX ðx; y; z; tÞ; Y ðx; y; z; tÞ; Zðx; y; z; tÞgT is a radius-vector defining the position of the point

in Cartesian coordinates, so that

rxðx; y; z; tÞ ¼
X;x

Y;x
Z;x

8<
:

9=
; ryðx; y; z; tÞ ¼

X;y

Y;y
Z;y

8<
:

9=
; rzðx; y; z; tÞ ¼

X;z

Y;z
Z;z

8<
:

9=
; ð28Þ

aðx; y; z; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
rx � rx

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX;xÞ2 þ ðY;xÞ2 þ ðZ;xÞ2

q
bðx; y; z; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

ry � ry
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX;yÞ2 þ ðY;yÞ2 þ ðZ;yÞ2

q
cðx; y; z; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

rz � rz
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX;zÞ2 þ ðY;zÞ2 þ ðZ;zÞ2

q ð29Þ

Like in the previous section, we consider curvilinear coordinates ðx; y; zÞ such that the x-axis (given by

intersection between coordinate surfaces y and z) is directed down the streamline of the velocity field, i.e.

v ¼ w ¼ 0. If parameter t was independent of ðx; y; zÞ, this coordinate system would remain orthogonal and

the small strain rate tensor would be given by (4).

When parameter t does change with curvilinear coordinates ðx; y; zÞ, in particular t ¼ z, this coordinate
system will not be orthogonal, so that the strain components derived from the velocity field v ¼ uex will be
affected by these changes. Thus

dv

dt
¼ du

dt
ex

�
þ u

dex
dt

�
t¼z

ð30Þ

where

du
dt

¼ u;xx;t þ u;yy;t þ u;zz;t þ u;t ð31Þ

dex
dt

¼ exxx;t þ exyy;t þ exzz;t þ ext ð32Þ

where x;t and y;t are obtained by differentiating expressions (24) with respect to t and subsequent substi-

tution of expressions (25) into them, while z;tjt¼z ¼ 1.
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From Boresi and Chong (2000) and relations (27) it follows that

exx ¼ 	 a;y

b
ey 	

a;z

c
ez exy ¼

b;x

a
ey exz ¼

c;x
a
ez ð33Þ

Substitution of Eqs. (31)–(33) into (30) yields:

dv

dt

����
t¼z

¼ ðu;xx;t þ u;yy;t þ u;z þ u;t þ uextexÞt¼zex þ
�
	 a;y

u
b
x;t þ b;x

u
a
y;t þ uextey

�
t¼z

ey

þ
�
	 a;z

u
c
x;t þ c;x

u
a
þ uextez

�
t¼z

ez ð34Þ

From exex ¼ 1 it follows that extex ¼ 0. Next, using orthogonality conditions (12) for plane fields and

conditions (17) and (19) for radial fields it can be easily shown that for any planar field: extez ¼ 0 and
a;z ¼ 0, so that Eqs. (34) can be further simplified:

1

c
dv

dt

����
t¼z

¼ 1

c
ðu;xx;t þ u;yy;t þ u;z þ u;tÞt¼zex þ

u
c

b;x

a
y;t

�
	 a;y

b
x;t þ

x
ab

�
t¼z

ey þ
c;x
c

u
a
ez ð35Þ

where

x ¼ X;xtXy þ Y;xtYy þ Z;xtZy ð36Þ

The left hand side of Eq. (35) can be expressed as:

1

c
dv

dt

����
t¼z

¼ 2 _eexzex þ 2 _eeyzey þ _eezez ð37Þ

Expressions (35)–(37) and (4) then yield the following strain rate tensor components for a planar field

depending on the parameter t ¼ z:

_eex ¼
u;x
a

_eexy ¼
a
2b

u
a

� �
;y

_eey ¼
b;x

b
u
a

_eeyz ¼
u
2c

b;x

a
y;t

�
	 a;y

b
x;t þ

x
ab

�
t¼z

_eez ¼
c;x
c

u
a

_eexz ¼
1

2c
ðu;xx;t þ u;yy;t þ u;z þ u;tÞt¼z

ð38Þ

Obviously, for cases when a planar velocity field can be expressed using curvilinear coordinates that do not

dependent on parameter t, the strain rate tensor (38) degenerates into expression (4).

The incompressibility condition is still given by Eq. (6), yielding the following functional form for the
velocity component u:

uðx; y; z; tÞ ¼ f ðy; zÞ
bðx; y; z; tÞcðx; y; z; tÞ ð39Þ

where f ðy; zÞ is an arbitrary function of y and z. It follows that the incompressibility condition does not

place any restrictions on variation of the velocity with y- and z-coordinates, but its variation with the x-
coordinate depends on the functional form of b and c.

The characteristic equation for the strain rate tensor (38), satisfying condition (6), is given by:

_ee3 	 p _ee þ q ¼ 0 ð40Þ
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where

p ¼ 	 _eex _eexy
_eeyx _eey

����
����	 _eey _eeyz

_eezy _eez

����
����	 _eex _eexz

_eezx _eez

����
���� ð41Þ

q ¼
_eex _eexy _eexz
_eeyx _eey _eeyz
_eezx _eezy _eez

������
������ ð42Þ

When p > 0, the absolutely largest value of the principal strain rate is obtained in closed form after solving

the cubic equation (40):

j _eejmax ¼
ffiffiffi
p
3

r
cos

1

3
arccos

3
ffiffiffi
3

p
jqj

2
ffiffiffiffiffi
p3

p
 !

ð43Þ

By substituting expression (43) into Eq. (1) and expressing an infinitesimal volume in curvilinear orthogonal

coordinates

dV ¼ abcdxdy dz ð44Þ
we can calculate the volume integral in Eq. (1) using simple numerical or analytical integration.

The surface integral in Eq. (1) is taken over the discontinuity surfaces. In many cases these discontinuity

surfaces coincide with the coordinate surfaces x, y or z. Then the infinitesimal area of discontinuity surface

is given by one of the following three expressions:

dSx ¼ bcdy dz dSy ¼ acdxdz dSz ¼ abdxdy ð45Þ
where dSx; dSy and dSz are the infinitesimal areas of the coordinate surfaces x, y and z, respectively. The
velocity jump Dv across the discontinuity is calculated as a vector difference between the tangential com-

ponents of the two velocity vectors at both sides of discontinuity. When the discontinuity coincides with the
coordinate surface x, one of these two vectors is perpendicular to the discontinuity and its tangential

component is zero. In cases when the discontinuity coincides with the coordinate surface y or z, one of these
two vectors lies entirely within the discontinuity; its tangential component is parallel to the x-coordinate line
and has a length u, defined by expression (39). This simplifies expression for jDvj in the surface integral in

Eq. (1), allowing for simple numerical or analytical integration.

As is seen from the above derivations, utilisation of a curvilinear orthogonal coordinate system simplifies

integration of the rate of dissipation of plastic work. Subsequently, the upper bound surface traction can be

easily calculated for the chosen planar KAVF.

3.2. Plane velocity fields

Let us consider examples of application of the above approach to the plane velocity fields described in

Section 2.2.

Example 3.2.1 (Straight streamlines). Consider a velocity field defined by coordinate transformations (13)

and (14), where parameters X0, Y0 and w are some functions of z. From Eqs. (5), (36), (39) it follows that
a ¼ b ¼ c ¼ 1, x ¼ w0ðtÞ and u ¼ f ðy; zÞ. From Eqs. (13) and (14) we obtain:

x;t ¼ yw0ðtÞ 	 X 0
0ðtÞ coswðtÞ 	 Y 0

0ðtÞ sinwðtÞ
y;t ¼ 	xw0ðtÞ þ X 0

0ðtÞ sinwðtÞ 	 Y 0
0ðtÞ coswðtÞ

(
ð46Þ
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so that the strain rate tensor (38) becomes:

_eex¼0 _eexy ¼ f;y=2

_eey¼0 _eeyz ¼ fw0ðzÞ=2
_eez¼0 _eexz ¼ f;z=2þ f;yð	xw0ðzÞ þ X 0

0ðzÞ sinwðzÞ 	 Y 0
0ðzÞ coswðzÞÞ=2

ð47Þ

From Eqs. (41) and (42) we obtain:

p ¼ _ee2xy þ _ee2yz þ _ee2xz > 0

q ¼ 2 _eexy _eeyz _eexz

8<
: ð48Þ

and the absolutely largest value of the principal strain rate is obtained from Eq. (43). In the particular case

of w ¼ const::

j _eejmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ee2xy þ _ee2xz

q
ð49Þ

Example 3.2.2 (Circular streamlines). Consider a velocity field defined by coordinate transformations (15)
and (16), where parameters X0 and Y0 are some functions of z. From Eqs. (5), (36), (39) it follows that a ¼ y,
b ¼ c ¼ 1, x ¼ 0 and u ¼ f ðy; zÞ. From Eqs. (15) and (16), we obtain:

x;t ¼
X 0
0ðtÞ sin x	 Y 0

0ðtÞ cos x
y

y;t ¼ 	X 0
0ðtÞ cos x	 Y 0

0ðtÞ sin x

8<
: ð50Þ

so that the strain rate tensor (38) becomes:

_eex ¼ 0 _eexy ¼ f =ð2yÞ 	 f;y=2

_eey ¼ 0 _eeyz ¼ f ðY 0
0ðzÞ cos x	 X 0

0ðzÞ sin xÞ=ð2yÞ
_eez ¼ 0 _eexz ¼ f;z=2	 f;yðX 0

0ðzÞ cos xþ Y 0
0ðzÞ sin xÞ=2

ð51Þ

From Eqs. (41) and (42) we obtain again Eq. (48) and the absolutely largest value of the principal strain rate

is obtained from Eq. (43). In the particular case of f ¼ const::

j _eejmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ee2xy þ _ee2yz

q
ð52Þ

3.3. Radial velocity fields

Finally, let us consider examples of application of the above approach to the radial velocity fields de-

scribed in Section 2.3.

Example 3.3.1 (Straight streamlines). Consider a velocity field defined by coordinate transformations (20)

and (21), where parameters R0, Y0 and w are some functions of z. From Eqs. (5), (36), (39) it follows that

a ¼ b ¼ 1, c ¼ x coswðtÞ 	 y sinwðtÞ þ R0ðtÞ, x ¼ w0ðtÞ and u ¼ f ðy; zÞ=ðx coswðtÞ 	 y sinwðtÞ þ R0ðtÞÞ.
From Eqs. (20) and (21) we obtain:

x;t ¼ yw0ðtÞ 	 R0
0ðtÞ coswðtÞ 	 Y 0

0ðtÞ sinwðtÞ
y;t ¼ 	xw0ðtÞ þ R0

0ðtÞ sinwðtÞ 	 Y 0
0ðtÞ coswðtÞ

(
ð53Þ
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so that the strain rate tensor (38) becomes:

_eex ¼ 	 f coswðzÞ
c2

_eexy ¼
f sinwðzÞ þ cf;y

2c2

_eey ¼ 0 _eeyz ¼ fw0ðzÞ=ð2c2Þ

_eez ¼
f coswðzÞ

c2
_eexz ¼

f;z þ f;yð	xw0ðzÞ þ R0
0ðzÞ sinwðzÞ 	 Y 0

0ðzÞ coswðzÞÞ
2c2

ð54Þ

From Eqs. (41) and (42) we obtain:

p ¼ _ee2xy þ _ee2yz þ _ee2xz þ _ee2z > 0

q ¼ 2 _eexy _eeyz _eexz þ _eezð _ee2yz 	 _ee2xyÞ

(
ð55Þ

and the absolutely largest value of the principal strain rate is obtained from Eq. (43).

Example 3.3.2 (Circular streamlines). Consider a velocity field defined by coordinate transformations (22)

and (23), where parameters X0 and Y0 are some functions of z. From Eqs. (5), (36), (39) it follows that a ¼ y,
b ¼ 1, c ¼ y cos xþ R0ðtÞ, x ¼ 0 and u ¼ f ðy; zÞ=ðy cos xþ R0ðtÞÞ. From Eqs. (22) and (23) we obtain:

x;t ¼
R0
0ðtÞ sin x	 Y 0

0ðtÞ cos x
y

y;t ¼ 	R0
0ðtÞ cos x	 Y 0

0ðtÞ sin x

8<
: ð56Þ

so that the strain rate tensor (38) becomes:

_eex ¼
f sin x

c2
_eexy ¼

ycf;y 	 ðy cos xþ cÞf
2yc2

_eey ¼ 0 _eeyz ¼ f ðY 0
0ðzÞ cos x	 R0

0ðzÞ sin xÞ=ð2yc2Þ

_eez ¼ 	 f sin x
c2

_eexz ¼
f;z 	 f;yðR0

0ðzÞ cos xþ Y 0
0ðzÞ sin xÞ

2c2

ð57Þ

From Eqs. (41) and (42) we obtain again Eq. (55) and the absolutely largest value of the principal strain rate

is obtained from Eq. (43).

3.4. Discussion

Derivation of KAVFs using the proposed approach has allowed closed form expressions of the maxi-

mum absolute values of principal strain rates to be obtained by means of a standard procedure. This will

reduce calculations of the upper bounds to simple numerical integration, while in some cases closed form

upper bound solutions could be obtained.

However, the benefits of the proposed approach extend far beyond simplifications in calculations. In the

following sections we demonstrate two applications of the approach, namely:

• plane KAVF for a circular footing;

• radial KAVF for an arbitrarily shaped footing.

4. Applications: plane fields for a circular footing

In order to demonstrate application of the proposed approach to derivation of non-plane-strain KAVFs,

let us consider the bearing capacity problem of a rigid rough circular footing of radius b on undrained
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saturated clay subjected to combined loading by a vertical force V and horizontal force H. The collapse

mechanism is assumed to comprise motion only in the plane of the combined V –H loading, with the extent

of the field determined by the width of the footing at any given offset from the center (Fig. 1). The in-

stantaneous velocity of the footing is parallel to the plane of the acting forces V andH and inclined by angle

d to the surface of the footing, with magnitude of v0 (Fig. 2). As is seen from Fig. 2a, in a section through a

plane parallel to the vertical plane containing the forces V and H, the field is built of two triangular rigid

zones 1 and 3 with straight streamlines, and one fan shear zone 2 with circular streamlines. The Cartesian
coordinate system is chosen with the origin at the center of the footing and axis Z perpendicular to the plane

of the forces V and H. The planar mechanism is thus equivalent to the mechanism proposed by Green

(1954) for a strip footing.

In rigid zone 1 (AtBtCt in Fig. 2b), a new coordinate system x1y1z with the origin at the point Bt is

obtained from the transformation (13), with wðtÞ ¼ d ¼ const:, X0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 	 t2

p
and Y0 ¼ Z0 ¼ 0. (Note

that, as given in Eqs. (14) and (16), the offset coordinate of the field under consideration is Z ¼ t, as t is
identified with z. The origin of the z-axis always stays in the XOY plane, therefore, Z0 ¼ 0.) A similar

transformation, but with wðtÞ ¼ 	p=4 ¼ const:, yields coordinate system x3y3z in rigid zone 3 (DtBtEt in
Fig. 2d). Finally, in the fan shear zone 2 (DtBtCt in Fig. 2c), the coordinate system x2y2z with the origin at

the point Bt is obtained from the transformation (15) with X0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 	 t2

p
and Y0 ¼ Z0 ¼ 0. The velocity

Fig. 1. Schematic of circular footing and associated KAVF.

Fig. 2. Plane field for a circular footing.
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fields in the three zones are all parallel to the xi axes, with velocity magnitudes given by ui ¼ fiðyi; zÞ ¼ v0,
where i is the zone number. As expected, using expressions (47) and (49), the maximum principal strain

rates are j _eejmax ¼ 0 in rigid zones 1 and 3. From expressions (51) and (52) we obtain j _eejmax ¼
v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 	 z2 cos2 x2

p �
2y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 	 z2

p� �
in shear zone 2. On the interfaces AtCt, CtDt and DtEt, there is a tan-

gential velocity jump Dvi ¼ v0. The expressions for the internal plastic work in each zone and the corres-

ponding interfaces are summarized in Table 1. The total plastic work D in the field is calculated by summing

the plastic work in each zone (Table 1). Consequently, Eq. (1) can be written for this case as

Vv0 sin d þHv0 cos d ¼ 2DðdÞ ð58Þ

In (V, H) space, expression (58) represents a straight line depending on parameter d. By varying this para-
meter we obtain a family of straight lines whose envelope represents an interaction diagram for the forces

Table 1

Internal plastic work for circular footing under inclined force loading

Internal plastic work

Region 1 Volume
D1 ¼ 2cu

Z b

0

Z 2 sin d
ffiffiffiffiffiffiffiffiffi
b2	z2

p

0

Z 0

	y1 cot d
j _eejmax dx1 dy1 dz ¼ 0

Interface
DAtCt

¼ cu

Z b

0

Z 0

	2 cos d
ffiffiffiffiffiffiffiffiffi
b2	z2

p jDv1jdx1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 sin2 d

b2 	 z2

s
dz ¼ 1

2
ðsin 2d þ p 	 2dÞb2cuv0

Region 2 Volume
D2 ¼ 2cu

Z b

0

Z 2 sin d
ffiffiffiffiffiffiffiffiffi
b2	z2

p

0

Z p=2þd

p=4
j _eejmaxy2 dx2 dy2 dz

¼ c
�

	 sin d þ 0:813532þ
Z d

0

x
sin x

dx
�
b2cuv0 sin d

Interface
DCtDt

¼ cu

Z b

0

Z p=2þd

p=4
jDv2j2 sin d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 	 z2

p
dx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 2 sin d þ cos x2ð Þ2

b2 	 z2

s
dz

¼ b2cuv0 sin d
p
2

��
þ 2d

�
sin d þ cos d 	 1=

ffiffiffi
2

p �

þ b2cuv0 sin d

R c
sin d f1ðxÞdx if c6 1R 1

sin d f1ðxÞdxþ
R c
1
f2ðxÞdx if c > 1

( )

Region 3 Volume D3 ¼ 2cu

Z b

0

Z 2 sin d
ffiffiffiffiffiffiffiffiffi
b2	z2

p

0

Z y3

0

j _eejmax dx3 dy3 dz ¼ 0

Interface DDtEt
¼ cu

Z b

0

Z 2 sin d
ffiffiffiffiffiffiffiffiffi
b2	z2

p

0

jDv3jdx3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

z2 2 sin d þ 1=
ffiffiffi
2

p� �2
b2 	 z2

s
dz

¼ b2cuv0 sin d

cþ f3ðcÞ if c < 1

cþ f4ðcÞ if c > 1

2 if c ¼ 1

8><
>:

9>=
>;

Where

c ¼ 2 sin d þ 1ffiffi
2

p ; f1ðxÞ ¼ f3ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	ð2 sin d	xÞ2

p ; f2ðxÞ ¼ f4ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	ð2 sin d	xÞ2

p ; f3ðxÞ ¼ arcsin
ffiffiffiffiffiffiffi
1	x2

pffiffiffiffiffiffiffi
1	x2

p ; f4ðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffi
x2	1

p
Þffiffiffiffiffiffiffi

x2	1
p .
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V andH. The resulting envelope is shown in Fig. 3, compared with the plane strain solution of Green (1954)

for a strip footing, with V and H normalised by Acu, where A is the area of the foundation.

The plane mechanism gives a bearing capacity factor of 6.8 under purely vertical load, which is 13%

greater than the exact bearing capacity of 6.05 (Eason and Shield, 1960). The discrepancy can be reduced to

2% through the use of a purely axisymmetric mechanism, but such a mechanism is not useful for combined

vertical and horizontal loading. As will be shown in a forthcoming paper, the mechanism proposed here

gives the closest known upper bound for values of H=V in excess of 0.06, and rapidly merges with the

failure envelope obtained from finite element computations as the H=V ratio increases further.

5. Applications: radial fields for arbitrarily shaped footings

Levin (1955) proposed an ingenious method for construction of a certain type of non-symmetrical radial

KAVFs. However, he was not able to present any results other than those for the axisymmetric case be-

cause of the considerable computational complexity of the general case. This complexity resulted mainly

from the fact that the velocity fields were formulated in general cylindrical coordinates. The approach

proposed in this paper allows for this complexity to be overcome even for more general fields than that

proposed by Levin (1955). It allows for the maximum principal strain rate to be obtained in closed form at

any point of the field, reducing calculations to simple numerical integration.
To illustrate this approach, let us consider the bearing capacity problem of a smooth footing of arbitrary

shape on undrained saturated clay subjected to a loading by a vertical force V (Fig. 4). For clarity of

presentation, the footing in Fig. 4a has a square shape, but the problem is solved for the case of an arbitrary

shape of the footing, which can be described in polar coordinates by some function dðzÞ. The instantaneous
velocity of the footing is vertical and its magnitude is equal to v0. As is seen from Fig. 4b, in a section

through a vertical plane containing the center of the footing, the field is built of two triangular shear zones 1

and 3 with straight streamlines, and one fan shear zone 2 with circular streamlines. The Cartesian coor-

dinate system is chosen with the origin at the center of the footing and axis Z in the horizontal plane of the
footing. Note that right angles within the KAVF are marked in the conventional way.

Fig. 3. Upper bound envelopes for strip and circular footings under V –H loading.
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In shear zone 1 (OAtBt in Fig. 4b), a new coordinate system x1y1z with the origin at the point Bt is

obtained from the transformation (20), with wðtÞ ¼ d ¼ const:, R0ðtÞ ¼ dðtÞ and Y0 ¼ 0. A similar trans-

formation, but with wðtÞ ¼ 	p=4 ¼ const:, yields coordinate system x3y3z in shear zone 3 (BtCtDt in Fig.

4b). Finally, in the fan shear zone 2 (AtBtCt in Fig. 4b), the coordinate system x2y2z with the origin at the

point Bt is obtained from the transformation (22) with R0ðtÞ ¼ dðtÞ and Y0 ¼ 0.

The velocity fields in the three zones are all parallel to the xi axes, where i is the zone number. Velocity
magnitudes in each zone can be defined using expression (7) and velocity continuity conditions on the

boundaries between the zones. In shear zone 1, u1ðx1; y1; zÞ ¼ f1ðy1; zÞ=c1ðx1; y1; zÞ, where c1ðx1; y1; zÞ ¼
x1 cos d 	 y1 sin d þ dðzÞ, and at the contact of the footing, where x1 ¼ 	y1 cot d, the velocity boundary

condition can be expressed as

u1ð	y1; y1; zÞ ¼ f1ðy1; zÞ=ð	y1= sin d þ dðzÞÞ ¼ v0= sin d

so that

f1ðy1; zÞ ¼ v0ðdðzÞ 	 y1= sin dÞ= sin d ð59Þ

u1ðx1; y1; zÞ ¼
v0ðdðzÞ 	 y1= sin dÞ= sin d
x1 cos d 	 y1 sin d þ dðzÞ ð60Þ

From Eq. (60) it follows that along the surface OAt, where y1 ¼ dðzÞ sin d, the velocity is given by u1 ¼ 0, i.e.
there is no velocity discontinuity across this surface.

In shear zone 2, we can describe the velocity as u2ðx2; y2; zÞ ¼ f2ðy2; zÞ=c2ðx2; y2; zÞ, where c2ðx2; y2; zÞ ¼
y2 cos x2 þ dðzÞ and at the boundary between the zones 1 and 2, where x1 ¼ 0, x2 ¼ p=2þ d and y1 ¼ y2, the
velocity continuity condition can be expressed as

u1ð0; y2; zÞ ¼ f1ðy2; zÞ=ð	y2 sin d þ dðzÞÞ ¼ u2ðp=2þ d; y2; zÞ ¼ f2ðy2; zÞ=ð	y2 sin d þ dðzÞÞ
so that

f2ðy2; zÞ ¼ v0ðdðzÞ 	 y2= sin dÞ= sin d ð61Þ

u2ðx2; y2; zÞ ¼
v0ððdðzÞ 	 y2= sin dÞ= sin d

y2 cos x2 þ dðzÞ ð62Þ

From Eq. (62) it follows that along the surface AtCt, where y2 ¼ dðzÞ sin d, the velocity is given by u2 ¼ 0,
i.e. there is no velocity discontinuity across this surface.

Fig. 4. Radial field for a square footing.

A.M. Puzrin, M.F. Randolph / International Journal of Solids and Structures 40 (2003) 3603–3619 3617



Finally, in shear zone 3, the velocity is given by u3ðx3; y3; zÞ ¼ f3ðy3; zÞ=c3ðx3; y3; zÞ, where c3ðx3; y3; zÞ ¼
x3=

ffiffiffi
2

p
þ y3=

ffiffiffi
2

p
þ dðzÞ and at the boundary between the zones 2 and 3, where x3 ¼ 0, x2 ¼ p=4 and y3 ¼ y2,

the velocity continuity condition can be expressed as

u3ð0; y3; zÞ ¼
ffiffiffi
2

p
f3ðy3; zÞ= y3

�
þ

ffiffiffi
2

p
dðzÞ

�
¼ u2ðp=4; y3; zÞ ¼

ffiffiffi
2

p
f2ðy3; zÞ= y3

�
þ

ffiffiffi
2

p
dðzÞ

�
so that

f3ðy3; zÞ ¼ v0ðdðzÞ 	 y3= sin dÞ= sin d ð63Þ

u3ðx3; y3; zÞ ¼
ffiffiffi
2

p
v0ðdðzÞ 	 y3= sin dÞ= sin dffiffiffi

2
p

dðzÞ þ x3 þ y3
ð64Þ

From Eq. (64) it follows that along the surface CtAt, where y2 ¼ dðzÞ sin d, the velocity is given by u3 ¼ 0,

i.e. there is no velocity discontinuity across this surface as well.

Substitution of Eqs. (59) and (63) into Eqs. (54) yields expressions for strain rate tensor components in
shear zones 1 and 3, respectively, while substitution of Eq. (61) into Eqs. (57) yields expressions for strain

rate tensor components in shear zones 2. These expressions are summarized in Table 2. By substituting

these expressions into Eqs. (55) and (43) we obtain the maximum principal strain rates, j _eejmax i, for each of

the three shear zones (where i is the number of the shear zone). These expressions are obtained in closed

form and are not presented here for the sake of brevity. The total plastic work D in the field is calculated by

summing the plastic work in each zone, so that Eq. (1) in our case can be written as

Vv0 ¼ 2cu

Z 2p

0

Z dðzÞ sin d

0

Z 0

	y1 cot d
j _eejmax 1ðdðzÞ þ x cos d 	 y sin dÞdx1 dy1 dz

þ 2cu

Z 2p

0

Z dðzÞ sin d

0

Z p=2þd

p=4
j _eejmax 2y2ðdðzÞ þ y2 cos x2Þdx2 dy2 dz

þ 2cu

Z 2p

0

Z dðzÞ sin d

0

Z y3

0

j _eejmax 3 dðzÞ
�

þ ðx3 þ y3Þ=
ffiffiffi
2

p �
dx3 dy3 dz ð65Þ

Table 2

Strain rates for arbitrarily shaped footing under vertical loading

Strain rates Region 1 Region 2 Region 3

_eex
	v0

ðdðzÞ sin d 	 yÞ cos d

c2 sin2 d
v0
ðdðzÞ sin d 	 yÞ sin x

c2 sin2 d
	v0

dðzÞ sin d 	 yð Þffiffiffi
2

p
c2 sin2 d

_eey 0 0 0

_eez
v0
ðdðzÞ sin d 	 yÞ cos d

c2 sin2 d
	v0

ðdðzÞ sin d 	 yÞ sin x
c2 sin2 d

v0
ðdðzÞ sin d 	 yÞffiffiffi

2
p

c2 sin2 d

_eexy 	v0
ðdðzÞ cos d þ xÞ cos d

2c2 sin2 d
v0
y2 cos x	 ðc þ y cos xÞdðzÞ sin d

2yc2 sin2 d
	v0

dðzÞð
ffiffiffi
2

p
þ sin dÞ þ x

2
ffiffiffi
2

p
c2 sin2 d

_eeyz 0 	v0
d 0ðzÞðdðzÞ sin d 	 yÞ sin x

2yc2 sin2 d

0

_eexz 0
v0
d 0ðzÞðsin d þ cos xÞ

2c2 sin2 d
v0
d 0ðzÞ sin d þ 1=

ffiffiffi
2

p� �
2c2 sin2 d

c dðzÞ þ x cos d 	 y sin d dðzÞ þ y cos x dðzÞ þ ðxþ yÞ=
ffiffiffi
2

p
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For a smooth circular footing with dðzÞ ¼ b ¼ const: and d ¼ p=4, Eq. (65) produces V=ðpb2Þ ¼ 5:83cu,
which is identical to the result obtained by Levin (1955). For a smooth square footing of the width and

length 2b : dðzÞ ¼ b= cos z, and for the particular case of a Levin type field with d ¼ p=4, Eq. (65) produces
V=ð4b2Þ ¼ 6:13cu. Levin (1955), though unable to obtain this result, predicted that it was likely to turn out
higher than the one for a circular footing, even though the actual bearing capacity for a square footing

should be lower than for a circular footing.

6. Concluding remarks

The method of derivation of KAVFs described in this paper extends the recently proposed method based
on the use of coordinate transformations. Both the original method and its extension provide significant

flexibility for 3-dimensional upper bound solutions in Tresca materials. The main feature of this approach

is that it allows the incompressibility condition to be satisfied simply by imposing certain requirements on

the analytical form of velocity magnitudes. This allows for new classes of velocity fields to be derived using

solely standard procedures. However, while the original method is limited to systems of orthogonal cur-

vilinear coordinates, its extension allows for new classes of fields, which could not be described by or-

thogonal systems, to be handled within the same framework. These new classes of fields include: new plane

but non-plane-strain KAVFs, like a plane field for a circular footing; new radial but non-axisymmetric
KAVFs, like a radial field for a square footing.

An additional advantage of the method is that it allows for expression of local dissipation of plastic work

in any field to be derived in closed form. When these expressions can be integrated analytically, we obtain

analytical solutions for upper bounds of collapse loads, but even numerical integration of these expressions

does not constitute a problem of significant complexity and can be easily performed using standard

spreadsheets. The proposed method makes an attempt to expand applicability of 3-dimensional upper

bound solutions by introducing more realistic shapes of KAVFs, while maintaining the simplicity and clear

engineering meaning of this approach.
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