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Abstract

A generalised framework has recently been proposed for derivation of kinematically admissible velocity fields in 3-
dimensional upper bound limit analysis in Tresca’s material using coordinate transformations. In many cases the ap-
proach allows the local dissipation of plastic work to be derived in closed form. The original framework was restricted
to orthogonal coordinate systems. However, the present paper extends the approach to allow for variations in plane or
radial velocity fields in a direction normal to the field. This important extension allows applications to horizontal
loading of circular foundations, or vertical loading of non-circular (e.g. square) foundations.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Upper bound limit analysis has proved a powerful tool in the solution of bearing capacity problems.
Historically, most solutions were restricted to 2-dimensional problems, either in plane strain or axial
symmetry, although 3-dimensional solutions have also been developed (e.g. Shield and Drucker, 1953;
Murff and Hamilton, 1993). In spite of the power of modern finite element software, upper bound solutions
still have a role to play, offering a number of advantages in terms of clear physical meaning, simplicity of
mathematical calculations, and extension to heterogeneous materials (of particular relevance to geotech-
nical engineering problems).

Recently, Puzrin and Randolph (2003) have proposed a generalised framework for developing 3-
dimensional upper bound solutions for materials satisfying Tresca’s failure criterion, ensuring admissibility
in respect of zero volumetric strains and adopting local coordinate systems that simplify computation of the
maximum principal strain rate. The framework uses orthogonal curvilinear coordinates and allows for
derivation of kinematically admissible velocity fields (KAVFs) with new streamline shapes, including
derivation of new plane but non-plane-strain fields and new radial but non-axisymmetric fields. However,
because of the restriction to orthogonal coordinate systems, derivation of arbitrary 3-dimensional velocity
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fields was not possible. For example, plane fields cannot be derived for footing shapes other than an infinite
strip, while radial fields cannot be derived for footing shapes other than circular.

The motivation of this paper is to develop an approach for construction of easily calculable 3-dimen-
sional KAVFs, which would allow greater flexibility in the generation of new upper bound solutions in-
volving, for example, plane velocity fields for a circular footing under horizontal or moment loading, or
radial fields for arbitrarily shaped footings. At this stage the analysis will be restricted to the fields with
straight or circular streamlines. In spite of this limitation, it is believed that the proposed approach will
allow for more accurate approximation of the velocity fields obtained from FE analysis, and hence the
development of improved upper bound solutions.

2. General framework for orthogonal fields

The key elements in the framework proposed by Puzrin and Randolph (2003) are summarized briefly
below, before extending their work to non-orthogonal systems. The general method for determining an
upper bound solution for assemblages of rigid and elastic—perfectly plastic bodies has been presented by
Drucker et al. (1951) and Shield and Drucker (1953). For Tresca’s yield criterion of constant maximum
shearing stress, ¢,, the upper bound solution for the surface traction T = {7, T, TZ}T is calculated from the
following equation:

/TTvdS: W(T,v) = D(v) :/Zcu|é|maXdV—i—/ cu|Av| dS (1)

N 4 Sp

where v = {v,,v,, v.}"—the KAVF; W(T,v), the rate of work done by the surface tractions; D(v), the rate of
dissipation of work; |&,,.,, the absolutely largest principal component of the plastic strain rate; Av, velocity
jump across any discontinuity; S, the surface that bounds the body or the assemblage of the bodies; V, the
volume of the assemblage of the bodies; Sp, the surface(s) of all discontinuities.

Any variation in the maximum shearing stress, ¢,, between the bodies in the assemblage, within the
volume of the bodies and along discontinuities must be taken into account in the evaluation of dissipation
in Eq. (1). Rigid bodies in the assemblage contribute nothing to the volume integration since the strain rate
is zero for a rigid body.

2.1. Orthogonal curvilinear coordinates

Consider Cartesian coordinates (X, Y, Z) and an alternative curvilinear orthogonal coordinate system

x=x(X,Y,2)
y=yX,Y,2) (2)
z=z(X,Y,Z)

defined in such a way that the x-axis (given by intersection between coordinate surfaces y and z) is directed
down the streamline of the velocity field. Thus, let the velocity field in coordinate directions x, y and z be
defined as v = {u,v,w}", with:

u=u(x,y,z) v=0 w=0 (3)

For these conditions, the small strain rate tensor in general orthogonal curvilinear coordinates is given by
(Boresi and Chong, 2000):
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0=/ + (1) + (2.)
B= (X, + (1) +(2,) (5)

=)+ (1) + (2.)

and the notation a, = 0a/0b is adopted.
The incompressibility condition is equivalent to the following differential equation:
uy Piu yiu
24— 6
o pa + Voo ©)
which, upon integration, yields the following functional form for the velocity component u:
S,2)
u(x,y,z) = 7
(x,¥,2) 5 (7)
where f(y,z) is an arbitrary function of y and z. Thus the incompressibility condition does not place any
restrictions on variation of the velocity with the y and z coordinates, but its variation with the x-coordinate
depends on the functional form of f and y.
Application of the above method to a chosen KAVF requires obtaining a closed form solution for the
system of equations (2):

X =X(x,y,2)
Y =Y(x,,2) (8)
Z=127(x,y,z)

satisfying uniqueness and orthogonality conditions:

Xy Yo Z
J=1X, Yy Z,|#0 ©)
X, Y. Z;

XX+ Y Y, +2,Z,=0
XXy +Y.Y,+2.2,=0 (10)
XX +Y,Y.+Z,Z.=0

Then, a family of non-intersecting streamlines can be associated with the x-coordinate lines. We shall first
consider a class of velocity fields such that each streamline in the field lies entirely within some plane,
referring to these fields as planar velocity fields. In planar velocity fields the condition that streamlines
should never intersect can be most easily satisfied in the following two cases:

Case I: Plane velocity fields—where all the planes are parallel to each other;
Case II: Radial velocity fields—where all the planes intersect along the same straight line.
These cases are considered separately below.
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2.2. Plane velocity fields

Let us choose the Z-axis of the Cartesian coordinate system in such a way that all the planes containing
streamlines are orthogonal to it. In this case the coordinate surface z is a plane given by z = Z — Z, so that
Z.=7Z,=0and Z, = 1. The uniqueness condition (9) becomes

Xny_ Y,XX,}’#O (11)

and it follows that, in order to have a non-trivial solution, orthogonality conditions (10) must be reduced
to:
XX, + Y, Y, =0
{X,z — 7.0 12
Let us consider some simple coordinate transformations satisfying both uniqueness (11) and orthogonality
conditions (12).

Example 2.2.1 (Straight streamlines). Consider coordinate surfaces x, y and z given by expressions

x=(X—-Xy)cosy + (Y — ¥)siny
= (¥ = Yy)cos i — (X — Xo) sin (13)
Z:Z—ZO

Intersection of a family of coordinate surfaces y with a plane z produces a family of straight parallel
streamlines, inclined to any Y = const. plane by angle y». When Eqgs. (13) are resolved, they produce:

X =X+ xcosyy — ysiny
Y=Y, +xsiny + ycosy (14)
Z:Z() +Z

From Egs. (5) it follows that o« = § =y = 1 and from Eq. (7): u = f(,z) is some function of coordinates
y and z describing a particular velocity field, satisfying the incompressibility condition for any smooth f.

Example 2.2.2 (Circular streamlines). Consider coordinate surfaces x, y and z given by expressions

—arctanY_Y0
e X — X,

15
y:VQ—nf+a—%f (15)
Z:Z—Zo

Intersection of a family of coordinate surfaces y with the plane z produces a family of circular concentric
streamlines, which are centered at the point {Xj, ¥,}. When Eqgs. (15) are resolved, they produce:

X =Xy +ycosx
Y =Y, +ysinx (16)
Z:Z() +Z

From Egs. (5) it follows that « = y and f = y = 1 and from Eq. (7) u = f(y,z) satisfies the incompressibility
condition for any smooth f.
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2.3. Radial velocity fields

Let us choose the Y-axis of the Cartesian coordinate system in such a way that it belongs to all the planes
containing streamlines. In this case the coordinate surface z is a plane given by Z = X tanz, so that

Z,=X,tanz
Z,=X,tanz (17)
Z.=X_.tanz + X (1 + tan’z)

The uniqueness condition (9) becomes

XXY«,,V - Yny ?é 0
{X#O (18)

and it follows, that in order to have a non-trivial solution, orthogonality conditions (10) must be reduced
to:

X X,(1+tan®2) + Y7, =0
X.=—Xtanz (19)
Y.=0

Two simple examples satisfying these conditions are considered below.

Example 2.3.1 (Straight streamlines). Consider coordinate surfaces x, y and z given by expressions

x=(VX2+2Z>—Ry)cosyy + (Y — Yy) siny
y=(Y—=Yy)cosy — (VX?+Z> — Ry) siny (20)
z = arctan(Z/X)

Intersection of a family of coordinate surfaces y with a plane Z = X tanz produces a family of straight
parallel streamlines, inclined to any Y = const. plane by angle y». When Egs. (20) are resolved, they pro-
duce:

X = (xcosyy —ysiny + Ry)cosz
Y =Yy + xsiny + ycosys (21)
Z = (xcosy —ysiny + Ry) sinz

From Eqgs. (5) it follows that « = =1 and y =xcosy —ysinyy + Ry and from Eq. (7) u=f(y,z)/
(xcosy — ysiny + Ry) satisfies the incompressibility condition for any smooth f.

Example 2.3.2 (Circular streamlines). Consider coordinate surfaces x, y and z given by expressions

Y- Y,
X = arctan —————

VX172 — Ry
y= (Y —Yy)cosy — (VX2 +Z2 — Ry) siny (22)

arctan z
z= —
X

Intersection of a family of coordinate surfaces y with a plane Z = X tanz produces a family of circular
concentric streamlines, which are centered at the points {R cosz, ¥, Ry sinz}. When Egs. (22) are resolved,
they produce:
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X = (ycosx + Ry)cosz
Y =Y +ysinx (23)
Z = (ycosx + Ry)sinz

From Egs. (5) it follows that «a =y, f=1 and y=ycosx+ Ry, so that from Eq. (7) u=f(y,z)/
(vcosx + Ry) satisfies the incompressibility condition for any smooth f".

2.4. Discussion

The general framework presented above allows for derivation of the 3-dimensional KAVFs from any
unique orthogonal transformation of Cartesian coordinates {X,Y,Z}. Straight and circular streamline
shapes have been considered, but other shapes are possible, for example involute, hyperbolic, etc. (Puzrin
and Randolph, 2003). It is also possible to derive new plane but non-plane-strain KAVFs and radial but
non-axisymmetric KAVFs. However, because the curvilinear coordinates used in this method are or-
thogonal, derivation of arbitrary planar 3-dimensional KAVFs is not possible. For example, plane fields
cannot be derived for footing shapes other than a strip, while radial fields cannot be derived for foot-
ing shapes other than circular, because for a planar field this would violate orthogonality between the z-
coordinate axis and xoy plane.

The purpose of this paper is to extend the above approach to allow for a greater flexibility in generation
of the new planar KAVFs, in particular plane fields for a circular footing or radial fields for arbitrarily
shaped footings. This extension can be easily accommodated by allowing for parameters Xp, Yo, Zy, Ry and
in coordinate transformations (14), (16), (21) and (23) to be some functions of z. Unfortunately, such
modifications result in these transformations becoming non-orthogonal, and the strain-rate tensor cannot
be expressed in the simple form (4) any more. Of course, there is a formal way to treat non-orthogonal
curvilinear transformations of coordinates and to derive corresponding components of the strain-rate
tensor (Sedov, 1973). Unfortunately, this general approach results in rather monstrous relationships for
strain-rate tensor components, which are unlikely to result in closed form expressions for the local dissi-
pation of plastic work. Bearing in mind that the objective of this study is to introduce more realistic shapes
of KAVFs, while maintaining simplicity and clear engineering meaning of the upper bound solutions, it is
essential to minimise complexity.

3. Simplified technique for non-orthogonal planar fields

This section offers a simplified technique for derivation of the plastic strain-rate tensor and of the local
dissipation of plastic work for some types of planar velocity fields, which cannot be obtained using or-
thogonal curvilinear coordinates. The technique will be applied to fields with straight and circular
streamlines, although it is developed in a general form to include other shapes as well.

3.1. Non-orthogonal curvilinear coordinates

Consider a curvilinear orthogonal coordinate system (2) with a functional dependence on parameter #:

x=x(X,Y,Z,1)
y=yX,Y,Z,1) (24)
z=z(X,Y,Z,1)
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where X, Y and Z are Cartesian coordinates:

X :X('x7y’z7t)
Y =Y(x,y,z,1) (25)
Z =Z(x,y,21)

When parameter 7 is independent of coordinates, the coordinate system (24) is orthogonal and the approach
described in the previous section applies. Modification of this approach will be achieved by identifying
parameter ¢ with curvilinear coordinate z, resulting in the coordinate system (24) becoming non-orthogonal.
However, for sake of formality, it is useful to keep them as two separate variables till later stages. The
original velocity field, when presented in curvilinear coordinates (x,y,z), is given by the vector:

v = ue, + ve, + we, (26)

where u = u(x,y,z,t), v =v(x,y,z,t), w=w(x,y,z,1¢) are the corresponding components of the velocity
field; e((x,,z,1), e,(x,»,z,t) and e.(x, y,z,¢) are unit coordinate vectors in coordinate directions x, y and z,
respectively (Boresi and Chong, 2000):

Ix ry v
e. = — e, = — e, = —

Ta TR 5T
where r(x,y,z,t) = {X (x,y,2,¢), Y(x,y,2,t), Z(x,y, z, t)}T is a radius-vector defining the position of the point
in Cartesian coordinates, so that

(27)

Xx Xy Xz
rx(x,y,z, t) =4 7Y ry(x,y,z, t) =47, rZ(x,yaZ, t) =47 (28)
Z, Z, Z,

o(x,p,2,8) = \JfFy -7 = \/(Xx)
Blr.y.zt) = i = /(X + (1) + (Z,) (29)

Like in the previous section, we consider curvilinear coordinates (x,y,z) such that the x-axis (given by
intersection between coordinate surfaces y and z) is directed down the streamline of the velocity field, i.e.
v =w = 0. If parameter ¢ was independent of (x, y,z), this coordinate system would remain orthogonal and
the small strain rate tensor would be given by (4).

When parameter ¢ does change with curvilinear coordinates (x,y,z), in particular ¢ = z, this coordinate
system will not be orthogonal, so that the strain components derived from the velocity field v = ue, will be
affected by these changes. Thus

dv du de,
a—(a@+”a)z 0
where
u
i X, +uyy, +u.z, +u, (31)
de,
di =ewX, +eyy, +ewz, +ey (32)

where x, and y, are obtained by differentiating expressions (24) with respect to ¢ and subsequent substi-
tution of expressions (25) into them, while z,|,_, = 1.
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From Boresi and Chong (2000) and relations (27) it follows that

2, 2, B, 7
exx:_Fyey_?zez exyzixey exz:iez (33)

Substitution of Egs. (31)-(33) into (30) yields:

dv u u
a = (u,xx‘t + Uyye + u. + U, + uextex)t:zex + - O(,yﬁx,t + ﬁ,x &yt + ueye, €y
t=z t=z
u u
+ ( — oc,z?c,, + T + uex,ez) e, (34)
(=2

From e.e, =1 it follows that eye, = 0. Next, using orthogonality conditions (12) for plane fields and
conditions (17) and (19) for radial fields it can be easily shown that for any planar field: e,e, = 0 and
o, = 0, so that Egs. (34) can be further simplified:

1 dv 1 u (P, o, w Yol

-, = - he ). z —-Ex - — - 0 — - 35

yar| Ty (uax, +uyy, +uz+u,),_e+ . ( R 8 X+ aﬁ)tzey + » %6 (35)
where

0 =XuX,+Yu¥,+ZZ, (36)

The left hand side of Eq. (35) can be expressed as:

Ldv

; i = 2ée, + 280, + ée; (37)

=z

Expressions (35)-(37) and (4) then yield the following strain rate tensor components for a planar field
depending on the parameter ¢t = z:

6 — Uy 6 — o (U)

a2 \a/

. ﬁjx u . u ﬁw-’( “Q’ w

& = F & &z = 2_7) 7)’.1 - ?x,[ + @ . (38)
. VU 1

& = y & Exz = 2_'V (uixx,r + uAyy,t + u,z + u,t)t:z

Obviously, for cases when a planar velocity field can be expressed using curvilinear coordinates that do not
dependent on parameter z, the strain rate tensor (38) degenerates into expression (4).

The incompressibility condition is still given by Eq. (6), yielding the following functional form for the
velocity component u:

z
f,2) (39)
X, ,2,0)p(x,y,2,1)
where f(y,z) is an arbitrary function of y and z. It follows that the incompressibility condition does not
place any restrictions on variation of the velocity with y- and z-coordinates, but its variation with the x-

coordinate depends on the functional form of § and y.
The characteristic equation for the strain rate tensor (38), satisfying condition (6), is given by:

& —pitq=0 (40)

u(x,y,z,t) = A
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where
o E éy & by & b 41
P="\s. & | o & & @ (41)
'YX 'y zZy z ZX 'z
éx éxy éxz
q= 8}95 Sy 8}7 (42)
Exx 82y &

When p > 0, the absolutely largest value of the principal strain rate is obtained in closed form after solving
the cubic equation (40):

1
€] ax = \/Ecos = arccos3\/§|q| (43)
* 3 3 2\/p>

By substituting expression (43) into Eq. (1) and expressing an infinitesimal volume in curvilinear orthogonal
coordinates

dV = afydxdydz (44)

we can calculate the volume integral in Eq. (1) using simple numerical or analytical integration.

The surface integral in Eq. (1) is taken over the discontinuity surfaces. In many cases these discontinuity
surfaces coincide with the coordinate surfaces x, y or z. Then the infinitesimal area of discontinuity surface
is given by one of the following three expressions:

dS, = pydydz dS, = aydxdz dS. = afdxdy (45)

where dS,, dS, and dS. are the infinitesimal areas of the coordinate surfaces x, y and z, respectively. The
velocity jump Av across the discontinuity is calculated as a vector difference between the tangential com-
ponents of the two velocity vectors at both sides of discontinuity. When the discontinuity coincides with the
coordinate surface x, one of these two vectors is perpendicular to the discontinuity and its tangential
component is zero. In cases when the discontinuity coincides with the coordinate surface y or z, one of these
two vectors lies entirely within the discontinuity; its tangential component is parallel to the x-coordinate line
and has a length u, defined by expression (39). This simplifies expression for |Av| in the surface integral in
Eq. (1), allowing for simple numerical or analytical integration.

As is seen from the above derivations, utilisation of a curvilinear orthogonal coordinate system simplifies
integration of the rate of dissipation of plastic work. Subsequently, the upper bound surface traction can be
easily calculated for the chosen planar KAVF.

3.2. Plane velocity fields

Let us consider examples of application of the above approach to the plane velocity fields described in
Section 2.2.

Example 3.2.1 (Straight streamlines). Consider a velocity field defined by coordinate transformations (13)
and (14), where parameters Xy, ¥y and y are some functions of z. From Egs. (5), (36), (39) it follows that
a=f=y=1, 0=y(t) and u = f(y,z). From Egs. (13) and (14) we obtain:

£, = 0/ (1) = X3(0)cos (1) = ¥i(0)sin (1) 6)
o = =l () + Xi(0) sin (1) = Y3 (1) cos ()
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so that the strain rate tensor (38) becomes:

Ex—0 éxy = f}/ 2
b0 &= [V(2))2 (47)
f.22:0 'éxz = fz/2 +fy(*)€!//,(2) +X(;(Z) sin ‘//(Z) - YO,(Z) COos I/I(Z))/2

From Egs. (41) and (42) we obtain:

2 a2 22
p=¢&,+& +é,>0
{ xy T 9z (48)

q = 2868,

and the absolutely largest value of the principal strain rate is obtained from Eq. (43). In the particular case
of Y = const.:

[Elmax = /85, + &2 (49)

Example 3.2.2 (Circular streamlines). Consider a velocity field defined by coordinate transformations (15)
and (16), where parameters X, and Y, are some functions of z. From Egs. (5), (36), (39) it follows that « = y,
p=y=1 o=0and u=f(y,z). From Egs. (15) and (16), we obtain:

{ X;(¢) sinx — Yy (¢) cosx
x‘[ =

y (50)
v = —X[(t) cosx — ¥;(¢) sinx

so that the strain rate tensor (38) becomes:
éx:() ‘Sxy:f/(zy)_fy/z
b =0 & = /(¥;(z)cosx — Xj(2) sinx)/(2y) (s1)
& =0 é.=71./2—f,(X;(z) cosx + Y;(z) sinx)/2

From Egs. (41) and (42) we obtain again Eq. (48) and the absolutely largest value of the principal strain rate
is obtained from Eq. (43). In the particular case of ' = const.:

[Elmax = /&5 + &2 (52)

3.3. Radial velocity fields

Finally, let us consider examples of application of the above approach to the radial velocity fields de-
scribed in Section 2.3.

Example 3.3.1 (Straight streamlines). Consider a velocity field defined by coordinate transformations (20)
and (21), where parameters Ry, ¥y and  are some functions of z. From Egs. (5), (36), (39) it follows that
a=pB=1, y=xcosy(t) —ysiny(t) + Ry(t), o =y'(t) and u=f(y,z)/(xcosy(t) — ysiny(t) + Ry(?)).
From Egs. (20) and (21) we obtain:

X, =3 (0) = Ry{1) cos (1) = Xy(0) sin (1) 5
= =l (6) + Ri{0)sin (1) = ¥y (1) cos (o)
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so that the strain rate tensor (38) becomes:

cosp(z) , _fsini(e) + s,

x V2 xy 27,2

6 =0 & =/V(2)/20) (54)
SeoSYE) et S () + RyE)sin ) — Ti(e) cos )

'z )/2 Xz 2'?2

From Egs. (41) and (42) we obtain:

Ly o,
g =288, + sz(eﬂ - sxy)

{p=é§y+é;+é§2+é§>o

and the absolutely largest value of the principal strain rate is obtained from Eq. (43).

Example 3.3.2 (Circular streamlines). Consider a velocity field defined by coordinate transformations (22)
and (23), where parameters X, and ¥; are some functions of z. From Egs. (5), (36), (39) it follows that o = y,
f=1,7=ycosx+ Ry(t), »=0and u = f(y,z)/(ycosx + Ry(¢)). From Egs. (22) and (23) we obtain:
Ry (t) sinx — Yj(f) cosx
X, =
! v (56)
v = —Ry(t) cosx — Y (t) sinx

so that the strain rate tensor (38) becomes:

' :fsinx s :yyf:y—(ycosx—i—y)f

&x

TR 27
6, =0 &.=f(Y(z)cosx — R)(z)sinx)/(2?) (57)
i _ [sinx :fz — fy(Ry(z) cosx + Y;(z) sinx)
4 ’yz 'XZ 2,})2

From Egs. (41) and (42) we obtain again Eq. (55) and the absolutely largest value of the principal strain rate
is obtained from Eq. (43).

3.4. Discussion

Derivation of KAVFs using the proposed approach has allowed closed form expressions of the maxi-
mum absolute values of principal strain rates to be obtained by means of a standard procedure. This will
reduce calculations of the upper bounds to simple numerical integration, while in some cases closed form
upper bound solutions could be obtained.

However, the benefits of the proposed approach extend far beyond simplifications in calculations. In the
following sections we demonstrate two applications of the approach, namely:

e plane KAVF for a circular footing;
e radial KAVF for an arbitrarily shaped footing.

4. Applications: plane fields for a circular footing

In order to demonstrate application of the proposed approach to derivation of non-plane-strain KAVFs,
let us consider the bearing capacity problem of a rigid rough circular footing of radius » on undrained



3614 A.M. Puzrin, M.F. Randolph | International Journal of Solids and Structures 40 (2003) 3603-3619

Footing

Extent of plane
A\ KAVF
H
YA 4
T KAVF

Section A-A

Fig. 1. Schematic of circular footing and associated KAVF.

saturated clay subjected to combined loading by a vertical force V and horizontal force H. The collapse
mechanism is assumed to comprise motion only in the plane of the combined V-H loading, with the extent
of the field determined by the width of the footing at any given offset from the center (Fig. 1). The in-
stantaneous velocity of the footing is parallel to the plane of the acting forces V and H and inclined by angle
0 to the surface of the footing, with magnitude of vy (Fig. 2). As is seen from Fig. 2a, in a section through a
plane parallel to the vertical plane containing the forces V and H, the field is built of two triangular rigid
zones 1 and 3 with straight streamlines, and one fan shear zone 2 with circular streamlines. The Cartesian
coordinate system is chosen with the origin at the center of the footing and axis Z perpendicular to the plane
of the forces V and H. The planar mechanism is thus equivalent to the mechanism proposed by Green
(1954) for a strip footing.

In rigid zone 1 (A(B(C; in Fig. 2b), a new coordinate system x;y;z with the origin at the point B, is
obtained from the transformation (13), with (¢) = 6 = const., Xo(¢) = Vb*> — > and ¥y = Z, = 0. (Note
that, as given in Egs. (14) and (16), the offset coordinate of the field under consideration is Z = ¢, as ¢ is
identified with z. The origin of the z-axis always stays in the XOY plane, therefore, Z, = 0.) A similar
transformation, but with (¢#) = —n/4 = const., yields coordinate system x;y;z in rigid zone 3 (D,B(E, in
Fig. 2d). Finally, in the fan shear zone 2 (D,B,C, in Fig. 2¢), the coordinate system x,),z with the origin at
the point B, is obtained from the transformation (15) with Xy(¢) = V6> — £ and ¥, = Z, = 0. The velocity

(d) Y

Fig. 2. Plane field for a circular footing.
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Table 1
Internal plastic work for circular footing under inclined force loading

Internal plastic work

Region 1 Volume b p2sinoVBI—2 0

=2, [ [ [ fdndndz =0
JO 0 —yj cotd
Interface 22sin 1. s
Dac, = cu / / |Avy|dxy\[ 1 +—5——=dz = > (sin 20 + 1 — 20)b°c, v
2cos VB2 b*—z 2
R '0 2 VOl e 2sin 0vVh2—z /240
caion - D, =2¢, / / / €] pax 2 dx2 dys dz

5
- <c—sin5+o.813532+/ .de>b2cuuosin5
o sinx

Interface /246 2(2sin & 2
De, 7@/ / |sz|2sin5\/bzzzdxz\/l 4 F@sindtcosx)

P _2
= bPeuvy sm5(<g+25> sind 4+ cos d — l/\/i)

Jins /1(x)dx if e<1 }

+ b*c,upsin o 1 . .
Jins @) dx+ [ o(x)dx if ¢ > 1

. ST
Region 3 Volume D — 2, /b /25115\/1, =) / i dndids 0
h 0 o o max
b p2sindvVH2 22 2(2sin & 2
2(2sind+1/v2
Interface Dpg, = ¢, / / |Avs | dxs \/ 1+ % dz
0o Jo _

c+fi(e) ife<1
=be,psind] ¢+ fale) ife>1
2 ife=1

Where

__ faly) . — arcsm \/l —x2 _ In(x+va2—-1)
¢= 2s1n6+¢-, fix) T o p 2sm<7 )’ fx) = V1-@2sino—x)?* £() P falx) = ’

Va2—1

fields in the three zones are all parallel to the x; axes, with velocity magnitudes given by u; = fi(y;,z) = v,
where 7 is the zone number. As expected, using expressions (47) and (49), the maximum principal strain

rates are |¢_ . =0 in rigid zones 1 and 3. From expressions (51) and (52) we obtain |¢|

max max ~—

vovVb? — z2 cos? x; / (2y2\/ b? — 22> in shear zone 2. On the interfaces A,C,, C,D, and D\E,, there is a tan-

gential velocity jump Av; = vy. The expressions for the internal plastic work in each zone and the corres-
ponding interfaces are summarized in Table 1. The total plastic work D in the field is calculated by summing
the plastic work in each zone (Table 1). Consequently, Eq. (1) can be written for this case as

Vg sin d + Hup cos § = 2D(9) (58)

In (V, H) space, expression (58) represents a straight line depending on parameter 6. By varying this para-
meter we obtain a family of straight lines whose envelope represents an interaction diagram for the forces
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Fig. 3. Upper bound envelopes for strip and circular footings under V—H loading.

V and H. The resulting envelope is shown in Fig. 3, compared with the plane strain solution of Green (1954)
for a strip footing, with 7 and H normalised by Ac,, where A is the area of the foundation.

The plane mechanism gives a bearing capacity factor of 6.8 under purely vertical load, which is 13%
greater than the exact bearing capacity of 6.05 (Eason and Shield, 1960). The discrepancy can be reduced to
2% through the use of a purely axisymmetric mechanism, but such a mechanism is not useful for combined
vertical and horizontal loading. As will be shown in a forthcoming paper, the mechanism proposed here
gives the closest known upper bound for values of H/V in excess of 0.06, and rapidly merges with the
failure envelope obtained from finite element computations as the H/V ratio increases further.

5. Applications: radial fields for arbitrarily shaped footings

Levin (1955) proposed an ingenious method for construction of a certain type of non-symmetrical radial
KAVFs. However, he was not able to present any results other than those for the axisymmetric case be-
cause of the considerable computational complexity of the general case. This complexity resulted mainly
from the fact that the velocity fields were formulated in general cylindrical coordinates. The approach
proposed in this paper allows for this complexity to be overcome even for more general fields than that
proposed by Levin (1955). It allows for the maximum principal strain rate to be obtained in closed form at
any point of the field, reducing calculations to simple numerical integration.

To illustrate this approach, let us consider the bearing capacity problem of a smooth footing of arbitrary
shape on undrained saturated clay subjected to a loading by a vertical force V (Fig. 4). For clarity of
presentation, the footing in Fig. 4a has a square shape, but the problem is solved for the case of an arbitrary
shape of the footing, which can be described in polar coordinates by some function d(z). The instantaneous
velocity of the footing is vertical and its magnitude is equal to vy. As is seen from Fig. 4b, in a section
through a vertical plane containing the center of the footing, the field is built of two triangular shear zones 1
and 3 with straight streamlines, and one fan shear zone 2 with circular streamlines. The Cartesian coor-
dinate system is chosen with the origin at the center of the footing and axis Z in the horizontal plane of the
footing. Note that right angles within the KAVF are marked in the conventional way.
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Fig. 4. Radial field for a square footing.

In shear zone 1 (OAB, in Fig. 4b), a new coordinate system x;y,z with the origin at the point B, is
obtained from the transformation (20), with y(¢) = = const., Ry(t) = d(¢) and ¥, = 0. A similar trans-
formation, but with (¢) = —n/4 = const., yields coordinate system x;y;z in shear zone 3 (B,C;D, in Fig.
4b). Finally, in the fan shear zone 2 (ABC, in Fig. 4b), the coordinate system x;),z with the origin at the
point B, is obtained from the transformation (22) with Ry(¢) = d(¢) and ¥, = 0.

The velocity fields in the three zones are all parallel to the x; axes, where i is the zone number. Velocity
magnitudes in each zone can be defined using expression (7) and velocity continuity conditions on the
boundaries between the zones. In shear zone 1, u;(xy,y1,2) = fi(v1,2)/y,(x1,0,2), where y,(x1,y,2) =
x;cosd —y;sind + d(z), and at the contact of the footing, where x; = —y; cotJ, the velocity boundary
condition can be expressed as

ui(=y1,m,2) = fin,z)/(=»1/sind +d(z)) = vo/ sin o

so that
Jibn,z) = vo(d(z) =/ sind)/ sin (59)
s (x1,1,2) :uo(d(z)—y]/siné)/siné (60)

X1 €080 — ysind + d(z)
From Eq. (60) it follows that along the surface OA, where y; = d(z) sin d, the velocity is given by u; = 0, i.e.
there is no velocity discontinuity across this surface.

In shear zone 2, we can describe the velocity as us(x2,12,2) = f2(02,2)/7,(%2,1,2), Where y,(x2,12,2) =
» cosx; + d(z) and at the boundary between the zones 1 and 2, where x; = 0, x, = /2 + 0 and y; = y», the
velocity continuity condition can be expressed as

u(0,32,2) = fi(»2,2)/(=y28in 6 + d(2)) = ur(n/2 + 0, 12,2) = f2(32,2)/(—»28Ind + d(2))
so that

f2(n,2) = vo(d(z) — y»/sind)/ sin & (61)

_ vo((d(z) — y2/sind)/ sin &
ua(x2,02,2) = ¥ cosx; + d(z) (62)

From Eq. (62) it follows that along the surface A,C;, where y, = d(z) sin d, the velocity is given by u, = 0,
i.e. there is no velocity discontinuity across this surface.
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Finally, in shear zone 3, the velocity is given by u3(x3,13,2) = f3(05,2)/73(x3,13,2), where y5(x3,13,2) =
x3/V2 4 y3/V/2 + d(z) and at the boundary between the zones 2 and 3, where x; = 0, x, = n/4 and y; = y,
the velocity continuity condition can be expressed as

u3(0,33.2) = V2 (35,2)/ (33 + V2d(2)) = wa(/33,2) = V2Aa(02.2)/ (33 + V2d(2))
so that
f3<y3,Z) = Uo(d<Z) —_)/3/Si1'1 5)/ Sin5 (63)

V200(d(z) — y3/ sin d)/ sin 6
\/zd(z) +x3+ 1
From Eq. (64) it follows that along the surface C,A,, where y, = d(z) sin d, the velocity is given by u; = 0,

i.e. there is no velocity discontinuity across this surface as well.

Substitution of Egs. (59) and (63) into Egs. (54) yields expressions for strain rate tensor components in
shear zones 1 and 3, respectively, while substitution of Eq. (61) into Eqgs. (57) yields expressions for strain
rate tensor components in shear zones 2. These expressions are summarized in Table 2. By substituting
these expressions into Eqgs. (55) and (43) we obtain the maximum principal strain rates, |£|,,,,, for each of
the three shear zones (where i is the number of the shear zone). These expressions are obtained in closed
form and are not presented here for the sake of brevity. The total plastic work D in the field is calculated by
summing the plastic work in each zone, so that Eq. (1) in our case can be written as

M3(x3,J/3»Z) = (64)

2n sin d
Vo, = 2cu/ / / €] ax 1 (d(2) +xcos 6 — ysin ) dx; dy, dz
—y) cotd

2n pd(z)sind Tt/2+()
+ 2¢, / / / &l nax 232 (d(2) + 2 cos x;) dx, dy, dz

2n )sin o
ey [T 7 (401 4 (5 50V2) st (65)
0 0 0
Table 2
Strain rates for arbitrarily shaped footing under vertical loading

Strain rates Region 1 Region 2 Region 3
& (d(z) sin$ — y) cos & (d(z) sind — y) sinx (d(z)siné —y)

L e S — bo—— S5 Uo7 so

2 sin” y?sin” o V2y2sin® 6

é, 0 0 0
£ (d(z)sind — y)cos d (d(z)sino — y) sinx (d(z)sino —y)

Vo—— 5 2. L e e — Vo— =5 3.

y2sin” 0 y?sin” o V2y2sin’ &
&y . (d(z) cos d + x) cos & . y? cosx — (y + ycosx)d(z) sin ) d(z)(V2 +sind) + x
0 2y2sin’ & ! 2yy? sin® o 2v/272sin’ &
é. 0 d'(z)(d(z)sind — y) sinx 0
— Uy
! 2y9? sin®
éx 0 . d'(z)(sin & + cosx) d'(z)(siné + 1/v2)
0 292 sin® ‘o W

l d(z) +xcosd — ysind d(z) + ycosx d2) + (x+y)/V2
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For a smooth circular footing with d(z) = b = const. and é = n/4, Eq. (65) produces V/(nb*) = 5.83¢,,
which is identical to the result obtained by Levin (1955). For a smooth square footing of the width and
length 2b : d(z) = b/ cosz, and for the particular case of a Levin type field with § = n/4, Eq. (65) produces
V/(4b*) = 6.13¢,. Levin (1955), though unable to obtain this result, predicted that it was likely to turn out
higher than the one for a circular footing, even though the actual bearing capacity for a square footing
should be lower than for a circular footing.

6. Concluding remarks

The method of derivation of KAVFSs described in this paper extends the recently proposed method based
on the use of coordinate transformations. Both the original method and its extension provide significant
flexibility for 3-dimensional upper bound solutions in Tresca materials. The main feature of this approach
is that it allows the incompressibility condition to be satisfied simply by imposing certain requirements on
the analytical form of velocity magnitudes. This allows for new classes of velocity fields to be derived using
solely standard procedures. However, while the original method is limited to systems of orthogonal cur-
vilinear coordinates, its extension allows for new classes of fields, which could not be described by or-
thogonal systems, to be handled within the same framework. These new classes of fields include: new plane
but non-plane-strain KAVFs, like a plane field for a circular footing; new radial but non-axisymmetric
KAVFs, like a radial field for a square footing.

An additional advantage of the method is that it allows for expression of local dissipation of plastic work
in any field to be derived in closed form. When these expressions can be integrated analytically, we obtain
analytical solutions for upper bounds of collapse loads, but even numerical integration of these expressions
does not constitute a problem of significant complexity and can be easily performed using standard
spreadsheets. The proposed method makes an attempt to expand applicability of 3-dimensional upper
bound solutions by introducing more realistic shapes of KAVFs, while maintaining the simplicity and clear
engineering meaning of this approach.
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